206 research outputs found

    Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems

    Get PDF
    Low order Runge-Kutta formulas with step control for heat transfer problem

    Classical seventh-, sixth-, and fifth-order Runge-Kutta-Nystrom formulas with stepsize control for general second-order differential equations

    Get PDF
    Runge-Kutta-Nystrom formulas of the seventh, sixth, and fifth order were derived for the general second order (vector) differential equation written as the second derivative of x = f(t, x, the first derivative of x). The formulas include a stepsize control procedure, based on a complete coverage of the leading term of the local truncation error in x, and they require no more evaluations per step than the earlier Runge-Kutta formulas for the first derivative of x = f(t, x). The developed formulas are expected to be time saving in comparison to the Runge-Kutta formulas for first-order differential equations, since it is not necessary to convert the second-order differential equations into twice as many first-order differential equations. The examples shown saved from 25 percent to 60 percent more computer time than the earlier formulas for first-order differential equations, and are comparable in accuracy

    Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil

    Get PDF
    Background: Multi-drug efflux pumps have been increasingly recognized as a major component of resistance in P. aeruginosa. We have investigated the expression level of efflux systems among clinical isolates of P. aeruginosa, regardless of their antimicrobial susceptibility profile.Results: Aztreonam exhibited the highest in vitro activity against the P. aeruginosa isolates studied (64.4% susceptibility), whereas susceptibility rates of imipenem and meropenem were both 47.5%. the MexXY-OprM and MexAB-OprM efflux systems were overexpressed in 50.8% and 27.1% of isolates studied, respectively. Overexpression of the MexEF-OprN and MexCD-OprJ systems was not observed. AmpC beta-lactamase was overexpressed in 11.9% of P. aeruginosa isolates. in addition, decreased oprD expression was also observed in 69.5% of the whole collection, and in 87.1% of the imipenem non-susceptible P. aeruginosa clinical isolates. the MBL-encoding genes bla(SPM-1) and bla(IMP-1) were detected in 23.7% and 1.7% P. aeruginosa isolates, respectively. the bla(GES-1) was detected in 5.1% of the isolates, while bla(GES-5) and bla(CTX-M-2) were observed in 1.7% of the isolates evaluated. in the present study, we have observed that efflux systems represent an adjuvant mechanism for antimicrobial resistance.Conclusions: Efflux systems in association of distinct mechanisms such as the porin down-regulation, AmpC overproduction and secondary beta-lactamases play also an important role in the multi-drug resistance phenotype among P. aeruginosa clinical isolates.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Div Infect Dis, BR-04039032 São Paulo, BrazilUniversidade Federal de São Paulo, Div Infect Dis, BR-04039032 São Paulo, BrazilFAPESP: FAPESP - 2006/01716-8CNPq: 307714/2006-3Web of Scienc

    Numerical Study of the Thermal Efficiency of a School Building with Complex Topology for Different Orientations

    Get PDF
    In this work a numerical model that simulates the thermal behavior of a building with complex topology and evaluates the indoor thermal and air quality, in transient conditions, is used for a school building thermal project. The program calculates the building surfaces solar radiation field, the building's temperatures, the internal environmental variables, and the occupant's comfort levels. Initially, after the numerical model is validated, the software is used to evaluate the school building's thermal response for four different orientations, either in winter or summer conditions. The work then aims to identify uncomfortable spaces in order to propose, as an example, several solutions that could be introduced for each orientation, that would improve the thermal comfort and air quality levels to which the occupants are subjected, and decrease the building's energy consumption levels. The information obtained from this study could be used to help a designer choose which thermal systems and solutions function best for a preferred school building orientation

    Scaling of Dirac Fermions and the WKB approximation

    Full text link
    We discuss a new method for obtaining the WKB approximation to the Dirac equation with a scalar potential and a time-like vector potential. We use the WKB solutions to investigate the scaling behavior of a confining model for quark-hadron duality. In this model, a light quark is bound to a heavy di-quark by a linear scalar potential. Absorption of virtual photons promotes the quark to bound states. The analog of the parton model for this case is for a virtual photon to eject the bound, ground-state quark directly into free continuum states. We compare the scaling limits of the response functions for these two transitions

    Unusual association of NDM-1 with KPC-2 and armA among Brazilian Enterobacteriaceae isolates

    Get PDF
    We report the microbiological characterization of four New Delhi metallo-beta-lactamase-1 (bla(NDM-1))-producing Enterobacteriaceae isolated in Rio de Janeiro, Brazil. bla(NDM-1) was located on a conjugative plasmid and was associated with Klebsiella pneumoniae carbapenemase-2 (bla(KPC-2)) or aminoglycoside-resistance methylase ( armA), a 16S rRNA methylase not previously reported in Brazil, in two distinct strains of Enterobacter cloacae. Our results suggested that the introduction of bla(NDM-1) in Brazil has been accompanied by rapid spread, since our isolates showed no genetic relationship.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Dept Med, Lab Especial Microbiol Clin, São Paulo, SP, BrazilDASA, Lab Diagnost Amer, São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Med, Lab Especial Microbiol Clin, São Paulo, SP, BrazilWeb of Scienc

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    • …
    corecore